Painlevé Analysis and Singular Manifold Method for a (2 + 1) Dimensional Non-Linear Schrödinger Equation

نویسنده

  • P G ESTÉVEZ
چکیده

The real version of a (2 + 1) dimensional integrable generalization of the nonlinear Schrödinger equation is studied from the point of view of Painlevé analysis. In this way we find the Lax pair, Darboux transformations and Hirota’s functions as well as solitonic and dromionic solutions from an iterative procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular manifold method for an equation in 2 + 1 dimensions

The Singular Manifold Method is presented as an excellent tool to study a 2 + 1 dimensional equation in despite of the fact that the same method presents several problems when applied to 1 + 1 reductions of the same equation. Nevertheless these problems are solved when the number of dimensions of the equation is increased.

متن کامل

THE RADIUS OF CONVERGENCE AND THE WELL-POSEDNESS OF THE PAINLEVÉ EXPANSIONS OF THE KORTEWEG-DE-VRIES EQUATION Short Title: Well Posedness of Painlevé expansions

In this paper we obtain explicit lower bounds for the radius of convergence of the Painlevé expansions of the Korteweg-de-Vries equation around a movable singularity manifold S in terms of the sup norms of the arbitrary functions involved. We use this estimate to prove the well-posedness of the singular Cauchy problem on S in the form of continuous dependence of the meromorphic solution on the ...

متن کامل

Differential Transform Method to two-dimensional non-linear wave equation

In this paper, an analytic solution is presented using differential transform method (DTM) for a class of wave equation. The emphasis is on the nonlinear two-dimensional wave equation. The procedures introduced in this paper are in recursive forms which can be used to obtain the closed form of the solutions, if they are required. The method is tested on various examples, and the results reveal ...

متن کامل

Comparison of The LBM With the Modified Local Crank-Nicolson Method Solution of Transient Two-Dimensional Non-Linear Burgers Equation

Burgers equation is a simplified form of the Navier-Stokes equation that represents the non-linear features of it. In this paper, the transient two-dimensional non-linear Burgers equation is solved using the Lattice Boltzmann Method (LBM). The results are compared with the Modified Local Crank-Nicolson method (MLCN) and exact solutions. The LBM has been emerged as a new numerical method for sol...

متن کامل

Numerical solution of the one dimensional non-linear Burgers equation using the Adomian decomposition method and the comparison between the modified Local Crank-Nicolson method and the VIM exact ‎solution

The Burgers’ equation is a simplified form of the Navier-Stokes equations that very well represents their non-linear features. In this paper, numerical methods of the Adomian decomposition and the Modified Crank – Nicholson, used for solving the one-dimensional Burgers’ equation, have been compared. These numerical methods have also been compared with the analytical method. In contrast to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001